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Executive Summary
This report addresses the operation of a serial string or dense cluster of passenger cars
equipped with a new automotive technology called adaptive cruise control (ACC). The
string or cluster conditions are expected to arise commonly on public roadways in the
future if ACC reaches high levels of penetration in the vehicle population. The report
presents results derived from a very limited experimental study of string and cluster
operations, as enabled by the availability of vehicles equipped with ACC systems after
their use in an extensive field operational test (FOT) [1]. This work also served as a
probing attempt to evaluate the impact of multiple ACC-equipped vehicles on such
general issues as safety, traffic flow, and interference with unequipped vehicles. As with
other automotive-control technologies in the early design stages, these broad issues may
serve to influence product design and public policy.

The ACC function enhances conventional cruise control by automatically adjusting
the speed of the host vehicle so as to maintain a driver-specified headway time between
the host and an impeding (target) vehicle. The technology’s primary component is a
sensor1 mounted on the front of the host vehicle that measures the distance between it and
the impeding vehicle. This basic range information and its derivative, range-rate, are used
by a control algorithm to perform the task of maintaining headway. Currently, ACC is not
an available automotive feature in the U.S., however, all the major automobile
manufacturers are considering the technology, and at least one European automobile
manufacturer plans to have it available in the U.S. within the next few years. ACC is
already available as an option on Mitsubishi and Toyota vehicles sold in Japan.

This report first comments briefly on prior studies addressing ACC string
performance and then presents a summary of the test procedures used here to roughly
explore operational issues. Results are then presented, followed by conclusions and
recommendations.

                                                

1 In some applications, more than one sensor is used. Current generation sensors use either infrared or radar
beams to detect objects in the path of the host vehicle. The sensors used in this study were of the
infrared type.



1.0 Background
There has been considerable effort by traffic flow analysts to studying the dynamics of
streams of vehicles [2]. For example, there are results showing the development of shock
waves in such vehicle streams, as generated by disturbances. One general idea is that,
once a disturbance is started, if trailing vehicles have sufficiently delayed responses to the
motions of preceding vehicles, eventually some vehicle back in the stream will need to
brake to a stop or change lanes to avoid hitting the rear of the preceding vehicle.

In considering the development of automated highway systems, researchers have
recently examined requirements for assuring that the headway gap does not go to zero.
Results from such analyses have helped to quantify impacts of string size and separation
showing that highway capacity could be greatly increased by means of automatically
controlled string operations.

In the course of such research the conditions for string stability have been rigorously
described in mathematical terms by Swaroop and Hedrick [3]. Although the application
of these rigorous results would show that the FOT cars employed here would not exhibit
string stability, the lack of such a stability quality is readily demonstrated using
conceptually simpler approaches. For example, direct simulation of the problem using
MATLAB/SIMULINK to create a string of 25 vehicles has shown the influence of
disturbance size on the gap-keeping capability of a hypothetical string of ACC-equipped
vehicles [4]. Based upon practical reasoning (or examining simulation results), it is
straightforward to see that if each successive vehicle closes beyond (i.e., undershoots) a
desired headway gap when the preceding vehicle slows down, the minimum headway gap
will get smaller and smaller as one examines each vehicle back into the stream.
Eventually, a driver needs to intervene suddenly or there will be a crash.

In this study, it was clear before testing that a string of cars equipped with the
elementary ACC system used in the FOT would not have string stability in general.
Hence, the purpose of operating a string of FOT cars was not to demonstrate the stability
property per se, but rather to expose the broad practical issues that attend ACC string
operations in normal freeway traffic. An important distinction in this context is the case
in which drivers are free to proceed as they see fit, coming in and out of proximity to
other vehicles equipped with ACC.



2.0 Description of the Vehicle Operations and
Procedures

The study involved operating eight ACC-equipped vehicles on limited access freeways.
These vehicles were driven by researchers having considerable  experience in driving
ACC systems in traffic on real roads. The reader is advised to consult reference [1] to
obtain a technical description of the ACC system, itself, and of the data acquisition
system by which vehicle responses and driver control input data were recorded.

Three distinct types of tests were performed with the FOT vehicles. These tests were
performed on highways in southeast Michigan during a weekday at approximately mid-
morning when traffic density is moderate to light and travel is at or near posted speed
limits. The road surface for all tests was dry. Drivers were given simple instructions for
each test scenario (detailed below) and were asked to drive in a safe, normal manner
within the boundaries of the test and to continue the test only if there was no increased
threat of an accident.

2.1 Longitudinal String Tests

The first procedure in this series of tests is best described as a longitudinal performance
and traffic conflict test. In this scenario, the test vehicles formed strings of four or eight
successive ACC cars in a string or platoon on a two-lane limited access-highway2. The
eight-vehicle test was also performed on a three-lane highway of which approximately
half the travel distance was designated as an express-configuration freeway, with no
access ramps.

The primary purposes of operating the four-car strings was to evaluate a) how
difficult the string is to maintain and b) to collect objective data on the longitudinal
performance of the ACC-vehicles in this configuration (i.e., evaluate how longitudinal
disturbances will affect the string.).

The purpose of the eight-vehicle string was to a) investigate a more exaggerated case
than that posed by a four-vehicle stream on the same road type under similar traffic
speeds and densities; b) evaluate how difficult the string is to maintain; c) make
observations about its effect on the surrounding traffic; d) evaluate the likelihood of the

                                                

2 The term platoon in this context is used to describe a line of vehicles travelling in series behind one
another at headway times of 1.0 to 2.0 seconds.



formation of an eight-car string; and e) to collect objective data on the longitudinal
performance of the ACC-vehicles in this configuration.

 Additionally, the eight-vehicle test was performed on a three-lane highway to a)
discover differences in ACC string operations that arise on multi-lane versus two-lane
freeway segments; b) investigate if the presence of many tight headway controllers, in the
lane adjacent to the right-most lane, might impede the cross-lane movements of vehicles
intending to enter or exit the freeway; and c) investigate the effect of a 1.0 and 1.4-second
headway time on the cross-lane movement of vehicles intending to enter or exit the
freeway.

2.2 Cluster Tests

Two tests were conducted to explore issues arising from the presence of multiple ACC-
equipped vehicles that might appear in a cluster when traveling near each other (and, in
some cases, passing each other) on a two-lane highway. In these tests the drivers were
given specific set-speed and headway-time assignments and were instructed to simply
engage the ACC-system and drive as they would normally toward the destination point.
The purposes of these tests were to: a) experience ACC driving in which a substantial
percentage of ACC-equipped vehicles appeared in the traffic stream without the
anomalies introduced by deliberate string-formation instructions as had been followed in
other tests; b) see if ACC cars might tend to form a spontaneous string; and c) determine
if the presence of a cluster of ACC vehicles in a confined group disrupted the traffic
stream in some way.



3.0 Observations and Objective Results for the Four-
Vehicle String Tests

The first test scenario consisted of a string of four ACC-equipped vehicles traveling on a
two lane, class-1 interstate highway. The test was conducted two times by two groups of
four vehicles. The distance traveled for each test was approximately 12 miles. The drivers
were instructed to stay in the same order for the duration of each test and make a
reasonable effort to maintain an uninterrupted series of four ACC-equipped vehicles.
Each set of four vehicles performed the test using a set-speed value of 111 ft/sec (76
mph). With the exception of the lead vehicle, the drivers were instructed to use a
headway time setting of 1.0 and 1.4 seconds for the two tests, respectively. The driver of
the lead vehicle was instructed to vary speeds during the test (thus providing some
longitudinal disturbance in the string) either by using the cruise control coast and
acceleration buttons or by following slower-moving, non-ACC vehicles.

3.1 Driver Observations

Following the test the drivers were asked to record their observations. In general,
observations fell into three categories, that is ease of string formation, harmonic nature of
the string, and effect of the string on traffic. A summary of these observations follows.

3.1.1 Naturalistic occurrence of vehicle strings

Most drivers felt that driving in a four-vehicle string was tolerable but not completely
natural. It took a conscious effort on each driver’s part to maintain a deliberate string
formation in real traffic.

3.1.2 Harmonic nature of FOT vehicles in a string

During most of the test, drivers observed that the control algorithm and deceleration
authority of the FOT vehicles was sufficient to handle the speed changes of the lead
vehicle. This was particularly true when these changes were within the normal range of
acceleration and deceleration encountered during typical highway driving. (The driver of
the lead car generally used the coast and acceleration buttons to change speed, which
meant that the lead vehicle’s level of acceleration and deceleration were within the
control authority of the ACC system.)  Drivers reported events (also verified in the
electronic data collected on each vehicle) in which the ACC controller implemented a



transmission downshift to increase the level of deceleration.3 In general, the longitudinal
string showed fully stable responses in the sense that the control authority of the vehicles
could handle routine disturbances by the first car in the string without causing the driver
to intervene by either disengaging the ACC or changing lanes.

3.1.3 Effect of a four-vehicle string on other traffic

On a two-lane freeway, much of the experience depends upon the choice of lane in which
to form the string. If formed in the left-most, or high-speed lane, the string presents an
unusual traffic impediment unless it is travelling at a speed that tends to satisfy the
passing intentions of other motorists using that lane. If the string forms in the right-most,
low-speed lane, the string becomes disrupted when encountering distinctly slower
vehicles. If such vehicles must be passed, the string must proceed toward the left and then
recover the right lane again. That is, the process of moving a string of vehicles through a
passing and re-forming maneuver encounters the conundrum of a) impeding left-lane
traffic while proceeding at a pace determined by the set-speed of the lead vehicle in the
string and b) having difficulty forming again in the same order in the right lane if, upon
recovery of the lane by the first few vehicles, other vehicles in the right lane move
forward and close up the tail end of the string segment, leaving the remainder unable to
resume position in the string. In the process of encountering conflict (b) the remaining
string members must linger in the left lane, assuming the totally unnatural posture, of
waiting for the adjacent spaces in the right lane to open up (precisely adjacent to their
assigned spaces in the string). The response of motorists expecting to move ahead in the
passing lane reveals their frustration with the decidedly odd behavior that is manifest
ahead of them.

3.2 Objective Results

A subset of the objective results for the four-vehicle string tests are shown in figures 1
through 3 below. These data present a case in which the drivers needed to intervene
because of the amplitude of the speed change. Figure 1 shows the velocity of the four
vehicles during and after a disturbance introduced by the first car in the string. (The 1.4-
second headway-time value was selected during this test.)  Figure 2 shows the

                                                

3 Throttle-off deceleration at highway speed on a zero grade road is about 0.03g for the FOT vehicles. A
transmission downshift from overdrive to third gear increases the deceleration level to approximately -
0.06 g.



corresponding range values for the following vehicles, and figure 3 shows a range, range-
rate phase diagram for the same time segment.
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The disturbance consisted of a sinusoidal-like velocity change from an initial value of
approximately 90 ft/sec  The lead vehicle reaches a maximum of 101 ft/sec and a
minimum of 76 ft/sec in a total period of 60 seconds for the entire maneuver. (The
maximum and minimum values corresponding to the response in figures 1 to 3 are shown
in table 1.)

Table 1 .  Maximum and minimum values of velocity, range,
and range-rate for a four-car string during a longitudinal disturbance

First Car Second Car Third Car Fourth Car
Velocity, ft/sec

Maximum 101.16 102.62 104.07 105.53
Minimum 76.19 70.35 65.25 59.33

Range, ft
Maximum N/A 179.79 237.86 257.54
Minimum N/A 28.21 12.46 18.70

Range-rate, ft/sec
Maximum N/A 12.21 17.49 12.30
Minimum N/A -11.02 -11.20 -11.39

During the deceleration portion of this maneuver, from time = 20 to time = 40
seconds, the lead vehicle has an average deceleration of 0.04 gs. The responses of the
other vehicles in the string are also shown in the figure. In this test, only the second car in
the string has enough control authority to “handle” the disturbance of the first car without



driver intervention. The response of the second car shows that the vehicle does overshoot
the velocity profile of the first vehicle and in this case the second vehicle reaches a
maximum of 102 ft/ sec and minimum of 70 ft/sec over a time span of 25 seconds. This
represents an overall increase of 28 percent in velocity and a 25 percent increase in time
to reach the extreme velocity values relative to the corresponding changes in the first car.

Of course, since the response of the second car constitutes the input for the third
vehicle, we see further exaggerations in responses, with the third car reaching a
maximum velocity of 104 ft/sec before beginning to decelerate. At a time of 50 seconds
the driver of the third car is forced to intervene and use the service brakes to avoid a rear-
end collision with car number two. Figure 2 shows the range as measured by the sensors
of cars two, three and four during this disturbance. For car three, the figure shows a range
of approximately 20 feet at the time of disengagement.

A similar scenario applies to the fourth vehicle of the string. This vehicle responds to
the exaggerated changes of the third car, exhibiting an even greater overshoot early in its
response and a driver intervention when range and range-rate reach uncomfortable levels.
(The data show a range of 30 ft and a range-rate of  -9 ft/sec when the driver applied the
brakes in car four. The driver of car four applied the brakes 2.0 seconds after the
commencement of braking by the driver of car three.)

Figure 3 below shows the range versus range-rate histories for cars two, three and
four in response to this disturbance. The traces show the characteristic circular shape of
response with large changes in range and range-rate. Because time is not shown in the
plot, the start and end of the disturbance are indicated in the plot. (Time always
progresses in a counter clockwise fashion in range range-rate diagrams.)  During the
initial segment of the maneuver, the vehicles are separating such that their range and
range-rate values increase. This is shown in the figure as a small half circle starting at
approximately 150 ft and zero range-rate and continues until the next zero range-rate
value at a range of approximately 175 ft. At this point the vehicles have started to close
on each other (crossing over to the negative range-rate side of the diagram) and, generally
they tend to travel the same path in the range range-rate space until close range values are
encountered. At this point, a clear deviation toward larger negative range-rate values is
shown for the fourth car. This dramatic change is due to braking by the third car. Large
changes in range-rate without a substantial change in range can only be achieved by large
relative velocity changes between two vehicles over a short period of time. Such a
relationship is reflected in the plot by the large horizontal change in the trace for the
fourth car, caused when the driver of that vehicle reached a 0.2 g-peak deceleration level.



4.0 Observations and Objective Results for the Eight-
Vehicle String Tests

The eight-vehicle string tests were conducted on two-lane and multi lane interstate
highway segments. Observations and objective results for these tests are discussed in the
two sections below.

4.1 Two-Lane Interstate Highway

The first eight-vehicle scenario consisted of a string of ACC-equipped vehicles traveling
on a two-lane freeway. As in the four-vehicle scenario described above, this test was also
conducted during the daytime when the road surface was dry. Traffic levels could be
described as medium density. The drivers were all instructed to use a set-speed value of
76 mph. In the first half of the 30-mile test, drivers used a 1.4-second headway time. For
the second half of the test, drivers used a 1.0-second headway time. As before, drivers
were instructed to make a best effort to maintain an uninterrupted string of ACC-
equipped vehicles.

4.2 Driver Observations

Following the test, drivers were asked to record their observations. The observations fell
into three categories, that is ease of string formation, harmonic nature of the string, and
effect of the string on traffic.

4.2.1 Formation concerns

The task of following specific cars in a specific order became exceedingly difficult as the
string got longer. Clearly the anomaly of following in an intentional order has virtually
no relevance to any plausible routine driving scenario. The experience of proceeding
through even moderate traffic as an eight-element string offers another odd case by which
to observe that the behavior of drivers in traffic involves highly developed sociological
expectations. In addition, the intentional-order-following string, per se, constitutes an
oddity that violates many of those expectancies. The condition of  steady-state with eight
vehicles was probably never achieved on this road type. At a headway time of 1.4
seconds, the tendency for headway instability can be better absorbed, but other cars and
trucks constantly interfere with the retention of the integral string of vehicles. At a
uniform headway time of 1.0 sec, less interference is encountered but the string is
rendered unstable merely by delays, grades, etc (no artificial disturbance had to be
introduced to destabilize the string).



4.2.2 Harmonic nature of FOT vehicles in a string

Rearmost vehicles had large range and velocity changes in response to longitudinal
disturbances initiated at the front of the string and the condition of steady-state with eight
vehicles was probably never achieved on this road type. Cars at the rear of the string
experienced continuous oscillations that is, strong acceleration followed by the need for
manual brake interventions during this test condition.

4.2.3 Effect of an eight-vehicle string on other traffic

The deliberate retention of an eight-vehicle string seemed to annoy the truck drivers
tremendously. When the string occupied the right lane one practicable issue that was
observed, is the problem presented to tractor semitrailers, whose overall length is around
60 to 100 feet. When using a one-second headway time, the gap between ACC-vehicles is
only 90 to 100 feet at normal highway speeds, thus posing a small gap that impedes the
truck driver’s attempts to resume the normal right-lane position after they have once
taken a position in the left lane. Further drama would be added to this case, though it was
not actually observed if the driver of a long truck simply needed to recover a spot in the
right lane in anticipation of an upcoming exit. The simple observation is that spacing
between vehicles in normal traffic is rather randomized— perhaps in part because the
individual driver is not highly skilled as a headway controller. Thus, a substantial
distribution of spacing exists in the normal traffic stream, presumably offering long
trucks and others concerned about lane changing ample opportunities for their desired
lateral movements.

An additional concern with heavy vehicles is raised by their low levels of acceleration
and deceleration capability relative to that of passenger vehicles. When heavy vehicles
need to interact with an eight-car string, which could be about 1000 feet long, substantial
traffic delays can result. In a two-lane setting, if a truck driver decides to pass a string of
vehicles, it takes time to make this maneuver and can result in a queue of traffic behind
the truck.

As for the influence of ACC headway time on the sensitivity of other traffic to string
operations, it was clear that many more cut-ins and pass-throughs of passenger vehicles
occurred on the two-lane freeway, without any disrupting outcomes, when the string was
operated at a common value of 1.4-second headway time.



4.3 Three-Lane Interstate Highway

This scenario consisted of a string of eight ACC-equipped vehicles traveling in the center
lane of a three-lane freeway, half of whose length incorporated no access ramps at all
(i.e., an “express” segment of urban freeway). For this test, the set speed was not constant
for each driver but was made dependent on each vehicle’s position within the string so as
to ensure that any string gap, once opened, would be quickly reclosed, thereby keeping
the string intact. The first vehicle used a set speed of 68 mph and each subsequent vehicle
was assigned to increment the preceding vehicle’s set speed by 2 mph. (Thus, the last
vehicle had a set speed of 82 mph.)  For the first half of the 30-mile test, drivers were
instructed to use a 1.4-second headway-time selection. During the second half of the test,
drivers were instructed to use the 1.0-second headway-time selection.

4.4 Driver Observations

Following the test, the drivers were asked to record their observations, as before, to
address the ease of string formation, harmonic nature of the string, and effect of the string
on the surrounding traffic.

4.4.1 Formation concerns

Efforts at string formation were more successful on a three-lane highway due to less
interference (and less traffic congestion) with other vehicles cutting into the string.

4.4.2 Harmonic nature of FOT vehicles in a string

Because there was less interference from other vehicles, the string was able to stay in
formation and in a steady-state condition much longer than in the two-lane test. However,
when there was a disturbance or destabilizing pulse caused by the first vehicle, it did
propagate down the string and caused the rearmost vehicles to slow down very
significantly (to the point of driver intervention via braking). The most severe transients
arose when a significant braking was imposed at the first vehicle.

4.4.3 Effect of an eight-vehicle string on other traffic

The experiment indicated that an ACC string running in the middle lane at uniform
values of 1.4-second headway time, posed virtually no cross-lane impediment. (It should
be cautioned, however, that very few tractor semitrailers were present in this traffic
stream.)  Even with 1.4-second headway time, however, the weaving movement of other
cars traversing the string lane either toward the right or toward the left is common.
(Please note, the term weaving will be used here in the traffic engineering sense by which



freeway drivers succeed in changing lanes over relatively short lengths of roadway as
part of the entry/exiting process and the transitions thereto, as discussed for example in
[1].)  When a 1.0-second headway time was used, it was clear that the string constituted a
significant impediment to traffic that intended cross-lane movement and that only rather
aggressive drivers were still able to change lanes by penetrating the string. It was also
observed that distinctly higher lateral-velocity cut-ins were apparent when drivers did cut
through the string under these conditions. A number of these lateral-cross-lane maneuvers
went all the way through the center lane in a single maneuver with no discernible pausing
to check the left-side destination lane. Other more cautious drivers were seen to travel
along next to the string for substantial distances after having merged on the freeway.
They were seen to travel along in the right lane, making hesitant moves toward the center
lane, and then retreating to wait a while longer, while apparently seeking a suitable gap
for access to the left-most lane. Such behavior should be expected by the large majority
of traffic that seeks to occupy higher-speed lanes, after merging onto the roadway,
thereby avoiding the conflicts that recur in the right lane due to entering and exiting
traffic. It is hypothesized that the cross-lane impediments, posed by ACC strings, such as
observed here, would tend to maximize in medium-density traffic having a substantial
number of trucks occupying the right lane and in areas for which high entry and exit
flows are prevalent.

4.5 Objective Results

A subset of the objective results for the eight-vehicle string tests are shown in figures 4
and 5. Figure 4 shows the velocity of the eight vehicles during and after a disturbance by
the first car in the string. (The 1.0-second headway time value was selected during this
test.)  Figure 5 shows the corresponding range values for the following vehicles. For this
set of results the drivers were able to stay in an uninterrupted string (with no intervention
necessary) throughout the entire disturbance transient.
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Figure 4.  Velocity time history of eight FOT vehicles in a
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Figure 5.  Range time history of seven FOT vehicles in a
string, following a longitudinal disturbance

The lead vehicle disturbance for these results was a simple downward ramp/step in
speed from 100 ft/sec to 93 ft/sec (a change of 5 mph) over a time of 8 seconds. The
response of the other vehicles in the string is shown in the figure. Figure 4 clearly reveals
the lag in response of each vehicle in the string. The effect of driving in a string with this
ACC system is a more severe response by each successive vehicle as the overshoot
propagates down the string. Table 2 shows the maximum and minimum values for



velocity, range and range-rate during this response sequence. For velocity, the minimum
values range from 90 ft/sec in the second car to 75 ft/sec in the last car.

Table 2 .  Maximum and minimum values of velocity, range,
and range-rate for a eight-car string during a longitudinal disturbance

1st Car 2nd Car 3rd Car 4th Car 5th Car 6th Car 7th Car 8th Car

Velocity, ft/sec

Maximum 101.9 104.1 104.1 103.3 103.3 104.1 104.1 105.5

Minimum 92.3 90.1 89.4 87.9 85.8 82.1 79.2 74.7

Range, ft

Maximum N/A 133.2 122.7 125.7 127.6 132.5 130.6 130.8

Minimum N/A 76.4 66.6 66.6 56.4 45.9 34.8 13.8

Range-rate, ft/sec

Maximum N/A 5.6 2.6 3.4 4.2 8.2 8.4 9.8

Minimum N/A -7.1 -7.4 -9.2 -9.9 -9.5 -9.1 -12.8

Figure 5 shows the range values for the second through eighth car. These results are
similar in shape and lag characteristics to those of velocity with the exception of more
extreme values being reached by the rear most vehicles. Table 2 shows the minimum
range going from 76 ft for the second car down to 14 ft for the last car. In the case of the
eighth car, approximately 90 percent of the available headway range was used before it
begins to separate from the seventh car.



5.0 Observations and Objective Results for the Eight-
vehicle Cluster Tests

Two tests were conducted to see if the presence of multiple ACC-equipped vehicles
would tend to form a cluster when traveling near each other on a two-lane suburban
freeway. In both tests, the vehicles entered the highway at 5-second intervals and the
drivers were instructed to simply engaged the ACC-system and drive as they would
normally toward the destination point. Successive vehicles were dispatched at modestly
incremented values of set speed, as shown in table 3. In the second test, all drivers used a
set speed of 74 mph and a headway time of 1.4 seconds.

Table 3   Order, Set Speed, and Headway Time for Cluster
Test 1

Highway
Entry No.

Car Number Set Speed,
mph

Headway
Time, sec

1 0 66 2.0

2 9 68 1.0

3 2 70 1.0

4 8 72 1.4

5 3 74 1.4

6 5 74 1.4

7 1 74 1.0

8 4 74 1.0

Following the test, the drivers were asked to record their observations, as discussed
below.

5.1 Driver Observations for Cluster Test 1

The free-flowing cluster approach resulted in a concentration of the eight FOT vehicles
within a group of approximately 20 vehicles during one segment of the trip. For this
approximate 40 percent concentration of ACC cars (running at a 1.4-second headway) no
discernible consequences were observed in terms of the freedom of other vehicles to
proceed. The traffic during this leg was light. In some cases, the ACC equipped vehicles
did follow each other, but when the road was clear, they did not get close enough to react
to each other. Also, if one car got caught behind some slower traffic, other ACC cars



would just pass by rather than follow. For the most part, the cars with the higher set
speeds simply passed the cars with the lower set speeds.

5.2 Objective Results

Objective results from the cluster test with initial conditions as described in table 3 are
shown in figures 6 and 7. Figure 6 shows the relative distance between the eight vehicles
as they traveled approximately 12 miles on a two-lane highway. The figure shows time
along the abscissa and relative distance in feet along the ordinate axis. Car 1 is used as
the zero-baseline for the results shown in figure 6. The figure shows that all vehicles
started out “behind” the baseline vehicle. This negative gap increases during the first part
of the test but as the rear most vehicles (i.e., those with higher set-speeds) enter the
highway, they begin to close on the baseline vehicle and pass each other. At
approximately 5.5 minutes into the test all but two of the eight vehicles have passed the
baseline. The last vehicle, Car 8, passes the baseline between 7 and 7.5 minutes into the
test. Overall, the figure does not suggest that the vehicles had a tendency to naturally
cluster (except into two-car pairs such as vehicles numbered 1 and 2) and these results
along with the driver’s comments suggest that multiple-ACC vehicles did not impede
each other under these driving conditions.
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Figure 6.  Relative distance during cluster test (Car 1 is
baseline)

Figure 7 is a global position satellite (GPS) map of the route driven under the
conditions outlined in table 3. (Note: Car 2 is missing from this list due to problems with



its GPS.)  The figure reveals the nominal extent of clustering which did prevail, as
expressed by the location and position of each vehicle at different snap shots taken each
minute during the test.
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Figure 7.  GPS map of FOT vehicles during cluster test

5.3 Driver Observations for Cluster Test 2

The second cluster test received a mixed response from drivers regarding the presence of
cluster formation. Some of the drivers were able to avoid all impeding vehicles during the
test and hence simply passed other vehicles (including FOT vehicles) that were travelling
more slowly. However, when impeded by other vehicles some test drivers did report
some clustering of the FOT. Nevertheless, it appears that any clustering occurred by
driver choice rather than by necessity. This test implies that, for short urban distances,
short strings might spontaneously occur from time to time and that during inter city trips,
longer strings could occur, depending on the occurrence of vehicles having similar set
speeds and depending on the degree of interference from other traffic, such as slower
moving trucks.



6.0 Conclusions
The experiments conducted here involved a naturalistic traffic setting but a contrived
procedure for inserting a dense grouping of ACC-equipped vehicles within the traffic
stream. Conclusions from this activity pertain both to the issue of test methodology and
to the long-term impacts of ACC on traffic operations.

6.1 Test Methodology

The principal research difficulties that arise when a group of confederated ACC drivers
deliberately form an ACC string in traffic are the following: 1) merging and lane-
changing movements of other vehicles tend to break up the string, 2) string-member
drivers must occasionally undertake odd tactics to reposition themselves into strings that
had become lost due to breakage, and 3) other drivers readily note the odd tactics of the
string members and appear to become rather distracted by them. The outcome of these
problems is that test productivity is low and questions of test validity arise from the
“oddness” of the string-maintenance contrivance in a public traffic stream. On the latter
point, it becomes difficult to discern which of the measured results is an artifact induced
by the deliberately-intended formation and maintenance of the string and which is a true
interaction such as would prevail in the future when ACC strings might form
spontaneously.

A fully valid means of studying the interaction between multiple, proximate, ACC-
equipped vehicles and other traffic would seem to require that ACC vehicles actually
comprise a high fraction of the vehicle population in normal usage. If this were cultivated
to occur, say through a massive localized field test, or if we simply waited until ACC had
so penetrated the vehicle market that a high-population fraction had accrued over many
years of ACC sales, the interactions between conventional traffic and naturally occurring
strings or clusters of ACC-equipped vehicles could be observed directly. The limited
results of the exercise described here suggest that fully instructive measurements will be
very difficult to obtain, otherwise. Nevertheless, episodes of steady-state string operation
do occur, even when the string is deliberately formed by confederate researchers. During
these periods, certain apparently valid phenomena do manifest themselves.



6.2 Interactions between Multiple ACC Vehicles and Nearby
Traffic

As implied above, it is assumed that high levels of ACC penetration into the vehicle
population will cause extended strings of ACC-equipped vehicles to form spontaneously
simply due to the probabilities of traffic mixing— even in the absence of any peculiar
natural tendencies toward aggregation of vehicles under ACC control. Thus, the dynamic
stability of ACC strings and their impact on the natural inter lane weaving movements of
other traffic will constitute real issues if ACC becomes a successful product.

Observations from these tests have indicated that significant traffic impacts could
arise from ACC strings. Firstly, considering simply the ACC system that was fielded
here, (with its low deceleration authority and relatively sluggish re-acceleration response)
a string of more than four of these vehicles will exhibit marginal stability levels, yielding
exaggerated responses when longitudinally disturbed from the forward end of the string.
With strings of eight vehicles equipped with this ACC controller, significant disruptions
in the smooth movement of a traffic stream would ensue following modest disturbances.

Further to the string-stability issue, the authors of this report are not aware that this
characteristic is being considered in the current design of automotive ACC products. In
fact, an opposite approach has been apparent by which ACC control algorithms are
“detuned” in some emerging products to render the controller unresponsive to brief
misdetections by the range sensor. While string-stability problems would not manifest
themselves as long as ACC-equipped vehicles are a rarity on the road, the issue will
become highly important whenever the population density begins to precipitate long-
string formation on a regular basis.

On the matter of cross-lane movements of other traffic, an important issue arises
when an ACC string constitutes a sort of “moving wall” that impedes the natural weaving
movement of other traffic. That is, due to ACC’s regularization of headway spacing,
randomly extended gaps do not occur in the same manner as seen in manually-controlled
traffic. Further, the ACC controller does not, by itself, respond to the “body language” of
other drivers who maneuver alongside, in an adjacent lane, with the clear intention of
weaving across into another destination lane. When headway time is in the vicinity of 1.0
second, at highway speed, it was seen that other motorists were basically thwarted in their
attempts to change lanes through an eight-car string that occupied the next-to-right-most
lane— occasionally exhibiting a fairly dramatic rate of penetrating the string in their
apparent frustration to find a fully suitable gap in line with their exit/entrance transition



plans. (Note that, upon entering a freeway, some more aggressive drivers seek to occupy
the “fast,” left-most lane as soon as possible— thus experiencing some frustration when
they remain “stuck” in the rightmost lane while searching for a suitable gap.)  When ACC
headway times were uniformly set to 1.5 seconds, other drivers appeared to penetrate the
string with minimal difficulty.

The string-penetration problem was seen to be most pronounced in the case of
combination trucks whose great overall length made the gap-mismatch issue acute.
Recognizing that many states legally require that  heavy trucks use the right lane except
when passing, the ability to readily recover the right-most lane position is fundamental to
normal truck operations. Clearly, if an ACC string occupies the right lane, the ACC
drivers simply must intervene upon the automatic-headway mode of control in order to
create a suitable space for lane recovery by trucks. The readiness of ACC drivers to
provide this courtesy, and indeed to recognize the need for it as a nuance of ACC control,
has not been studied here.

When multiple-ACC vehicles appeared nearby one another in a noncontiguous,
clustering type of distribution, no operational difficulties were noted. Even with a 40%
density of ACC-equipped vehicles in a cluster of manually driven vehicles (but with no
more than three ACC vehicles positioned in a continuous string at any one time) no
disturbance of normal traffic movements was noted.

6.3 Future Test Possibilities

Alternative testing conditions that would extend the results presented here are listed
below:
• Eight-car string of vehicles equipped with updated ACC systems (higher resume

accelerations) and more deceleration authority through the use of the foundation brakes.
• String operation at closer headway (less than a second) to understand safety

implications
• String operation in the presence of dense commuter traffic to study the extent of

longitudinal disturbance responses on the localized movement of near-capacity traffic.
• String operation at longer headway (2 seconds) to better understand cut-in implications.
• Longer test-drives, one hour or more, to represent inter-city operations; including

nighttime operations. Start out in a string with equal Vset (set speed) and Th (headway
time) values. See if drivers stay in a string and like it or would rather operate
independently.
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